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Abstract—From the conservation of energy principle, the real
part of the mutual impedance between antenna elements, or
the mutual resistance, can be found for lossless antennas by
computing embedded element pattern overlap integrals. Us-
ing the asymptotic behavior of mutual impedances for large
separation distances, mutual reactance can be estimated from
the derivative of the pattern overlap integrals with respect to
element separation. This allows the pattern overlap integral to be
modified to provide an estimate of the reactive part of the mutual
coupling, so that pattern overlap integrals give the complex
mutual impedance between antennas including both real and
imaginary parts. For numerical methods that compute overlap
integrals to estimate array thermal noise response, gain, or
beam-dependent efficiencies, a simple modification can be made
to the algorithm so that the overlap integrals provide mutual
impedances. Numerical results show that the modified overlap
integral method for mutual impedance estimation is reasonably
accurate for dipole antennas in the near and far fields.

I. INTRODUCTION

Determining the mutual coupling between antenna elements
in an array is needed for a variety of applications, includ-
ing multiple input multiple output (MIMO) communications,
arrays for magnetic resonance imaging, and high-sensitivity
astronomical imaging systems. Even with fast numerical meth-
ods, for large imaging arrays, full wave numerical simulation
of array coupling can require days to weeks. In these applica-
tions, fast and accurate methods for rapidly estimating mutual
coupling are desirable.

One method for approximating mutual impedances is the
induced electromotive force (EMF) method, which has been
known since the 1950s [1]. More sophisticated techniques with
greater accuracy are available that offer greater accuracy and
can be valid in the near field [2]–[5], but these methods are
generally difficult to implement in comparison to classical
techniques for coupling estimation.

Another approach to determining mutual coupling is based
on integrals of inner products of embedded element patterns
(EEPs), or pattern overlap integrals. Overlap integrals have
been referred to as beam coupling factors [6]. Pattern overlap
integrals can be used to find the response of an array to ex-
ternal thermal noise, antenna gain for coupled arrays, aperture
efficiency for formed beams, and other antenna parameters and
figures of merit [7]–[9]. Using conservation of energy, for a
lossless array the real part of the mutual impedance matrix
can be found from array element pattern overlap integrals
[7], [9], [10]. This is an exact relationship that holds in the
near and far fields. Pattern overlap integrals in their standard
form, however, only give the real mutual coupling and not the
reactive part.

Here we use the asymptotic behavior of mutual impedances
as a function of separation distances to develop a modified
pattern overlap integral that gives both the real and reactive
parts of the mutual coupling between elements in an antenna
array. With this method, existing overlap integral codes can
be modified in a simple way to compute complex mutual
impedances for antenna arrays from the element patterns.

II. DERIVATION

A. Mutual coupling in the far field

Using reciprocity and the far field approximation, the mutual
coupling between two elements in an array is the open circuit
voltage at the terminals of the mth element in an array induced
by the field radiated by element n, which can be approximated
in the far field as [9, Eq. (2.38)]

Zmn ≃ 4πjrejkr

ωµI0
Em · En(r) (1)

Since this formula is based on the reciprocity principle, the
dot product is computed without a complex conjugate. En is
the field radiated by the nth element evaluated at the origin of
the coordinate system used to compute the far field radiated
by the mth element. Em(r) is evaluated at a point r in the
direction of the nth element’s phase center and r = |r|. This
approximation for the coupling between antennas is related to
the induced EMF method [1] for finding the coupling between
antennas.

The leading dependence of the incident field En on the
distance d from the mth element in the far field is

En(r) ∼
e−jkd

d
, r → ∞ (2)

The r dependence of Em in (1) is removed by the factor rejkr.
The mutual impedance has the same dependence on distance
between elements as the far field of an antenna, so that

Zmn ∼ e−jkd

d
, r → ∞ (3)

for large distances between elements m and n. By evaluating
the derivative with respect to distance d, it can be seen that to
first order,

∂

∂d
Zmn ≃ −jkZmn (4)

The real part of this equation is

∂

∂d
Re[Zmn] ≃ k Im[Zmn] (5)

This means that the real and imaginary parts of the mutual
impedance are in quadrature with respect to d and we can



approximate the reactive part of the mutual impedance from
the real part by

Im[Zmn] ≃
1

k

∂

∂d
Re[Zmn] (6)

This relationship will provide a way to estimate reactive
coupling from antenna array pattern overlap integrals.

B. Modified pattern overlap integrals

For a lossless antenna array, the real part of the mutual
impedance matrix is given by the pattern overlap integrals [9]

Re[Zmn] =
1

η|I0|2

∮
Em(r) · E∗

n(r) dr (7)

where the region of integration is a surface enclosing the
antenna array and Em is the embedded element pattern with
the mth element excited by input current I0 and the other
elements terminated with open circuit loads. EEPs are found
by exciting one element in the array at a time. Since EEPs
depend on the loads or terminations on the nondriven elements,
the loading condition must be considered when using (7). If the
EEPs are simulated or measured for, say, a matched loading
condition, a matrix transformation can be used to convert the
EEPs to the open circuit loading condition [11].

If the array elements are approximated as identical other
than a shift in location, then the element patterns are related
by

En(r) ≃ Em(r)ejkr̂·rmn (8)

where rmn = rn − rm is the relative position vector between
elements m and n. Inserting this into the overlap integral gives

Re[Zmn] =
1

η|I0|2

∮ ∣∣Em(r)
∣∣2 ejkr̂·rmn dr (9)

Using (6), the reactive part of the mutual impedance can be
approximated as

Im[Zmn] ≃
1

η|I0|2
1

k

∂

∂d

∮ ∣∣Em(r)
∣∣2 ejkdr̂·r̂mn (10)

where d = rmn. Evaluating the derivative leads to

Im[Zmn] ≃
1

η|I0|2

∮
|Em(r)|2jr̂ · r̂mne

jkr̂·rmn (11)

Combining this expression with (7) and removing the approx-
imation (8) gives the modified pattern overlap integral

Zmn ≃ 1

η|I0|2

∮
Em(r) · E∗

n(r)(1− r̂ · r̂mn) dr (12)

for the mutual impedance between elements m and n. This
expression is similar to (7), except that it has the additional
term −r̂ · r̂mn in the integrand and gives both the real and
reactive coupling between the elements.

Aside from the simple computation required to find the
dot product of the unit vector corresponding to the integra-
tion point with the unit offset vector r̂mn between the two
elements, the integral in (12) requires no more cost than
evaluating the standard array element pattern overlap integral,
yet it provides the exact real coupling between the elements
and an estimate of the reactive coupling.
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Fig. 1. Mutual impedance for parallel half wave dipoles as a function of
separation distance. For the parallel case and separation distances larger than
a wavelength, the modified overlap integral (12) is similar in value to the
far field induced EMF approximation (1). For closer separation distances, the
modified overlap integral is more accurate.

III. RESULTS

The accuracy of the modified overlap integral approximation
for the mutual coupling between antenna elements was studied
by comparing to numerical results for half wave dipoles in
parallel and collinear configurations.

Figure 1 shows the case of parallel dipoles. The method
of moments was used to generate reference values. The
modified overlap integral (12) gives similar results to the
far field induced EMF method in (1) and both are close to
the method of moments results for element spacings larger
than a wavelength. For elements spaced more closely than a
wavelength, the modified overlap integral values are closer to
the method of moments than the far field approximation.

Results for collinear dipoles are shown in Fig. 2. In this
case, the induced EMF method gives a zero value for the
mutual impedance. The modified overlap integral results agree
reasonably well with the method of moments even for spacings
between the collinear elements that are small enough that the
dipoles are nearly connected.

IV. CONCLUSION

We have developed a modified overlap integral that gives
the exact mutual resistance and an estimate of the mutual
reactance. Although the result was derived using the far field
approximation, since the traditional overlap integral method
for finding mutual resistance, ignoring antenna loss, is exact
and holds in both the near and far fields, one might expect that
the modified overlap integral is reasonably accurate in the near
field as well as the far field. Numerical results suggest that this
may be the case.

One benefit of the proposed method is that modeling codes
that already compute pattern overlap integrals for modeling
the response of the array to isotropic thermal noise [9] or
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Fig. 2. Mutual impedance for collinear half wave dipoles. The far field
approximation (1) is zero, as the array elements radiate no field in the direction
of the dipole axis. The modified overlap integral (12) is reasonably accurate
even for relatively closely spaced elements.

other purposes can be modified in a simple way to provide
the mutual impedance including both the real and imaginary
parts.

Another benefit of the proposed method is that it can be
used to estimate mutual coupling between elements in different
subarrays in a way that includes the effect of neighboring
elements on the coupling between distant elements. For a
large array with two disconnected subarrays, a full wave
numerical method can be used to find the embedded element
patterns for the elements in the first subarray. In a separate
computation the EEPs are found for the second subarray.
If the modified overlap integral in (12) is used to find the
coupling between an element in the first subarray and an
element in the second subarray, the coupling estimate includes
the effects of neighboring elements or structures near either
element in the two subarrays. In view of the computational
cost scaling of full wave numerical methods, modeling the
two subarrays separately is significantly faster than modeling
the full array, particularly when the arrays are large in relation
to the operating wavelength.
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